
 
 

 

  

Abstract— Given an image stack, instead of requiring the 
whole 3D model, researchers may be interested in the local 3D 
structure of the specimens. Partial 3D component retrieval from 
2D image slices represents a difficult and challenging problem. 
To group related objects on different layers of image slices, 
sequential matching of adjacent 2D objects has to be 
performed. In this paper we propose a new approach for object 
contour matching and partial 3D component retrieval based on 
hierarchical contour structure. Object matching involves heavy 
computing and is time consuming. We designed two parallel 
algorithms for image object matching and partially image 
component retrieval based on the contour structure using MPI. 
The experimental results show the contour structure model is 
suitable for 3D reconstruction from 2D image slices and our 
parallel algorithms achieve a good speedup.   

Index Terms— 3D reconstruction, edge detection, 
segmentation, 3D component retrieval, neuron confocal image 
 

I. INTRODUCTION 

D reconstruction of biological structures from image 
slices has been widely used in biological, biomedical 

research as well as  disease diagnosis and treatment [1]. 
Many 3D reconstruction software packages have been 
developed in the recent years, including NEUROLUCIDA 
[2], a semi 3D reconstruction package for neuron 
anatomical analysis, and 3D-Doctor [3], a vector based 
architecture for 3D modeling. A shortcoming of these 
commercial products is that the new created 3D object lacks 
the capability of 3D component partial retrieval and is hard 
to convert 2D image slices into standard database 
automatically.  

 In this paper, we provide a new method for 3D 
reconstruction and 3D partial retrieval using a contour data 
structure. The basic idea is, for each image stack, we first 
segment the objects to get the object contours from 
individual image slices and then link the related contours on 
the adjacent image slices. That is, we have two stages: a 
separating stage, which divides individual image slices into 
object contours, and a grouping stage, which links the 
related object contours on the adjacent image slices.  

In the first stage, object contours are extracted from 
image slices and converted into an xml database. In the xml 
database, each contour is represented by a node. Each node 
has several elements which represent contour’s features, 
including contour layer, length, area, centroid, moments and 
coordinates of all the pixels on the contour. In this way, 
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instead of having to interact with raw image data, the 
following algorithm only needs to take the xml database as 
the input. In this stage, each image slice is divided into 
several objects which are considered not belonging to the 
same 3D component. 

Next step, for each object contour, we decide if there is a 
similar object contour on its neighbor slice. If we find one, 
we will make a link between them and the xml database is 
updated accordingly. The linking information of the object 
contour is represented by the elements of its corresponding 
node in xml database. In this stage, two adjacent image 
slices are linked by those object contours which are 
considered belonging to the same 3D component.  

Now, the xml database is made of several tree structures. 
Each tree structure is a 3D component. Comparing with 
original image slices, the xml database is easy to maintain 
and is convenient for 3D reconstruction and partial 3D 
component retrieval. 
 Object contour matching requires heavy mathematical 
computation, which is time consuming. We also parallize 
the algorithms and achieve good speedups. 

 The paper is organized as follows: In Section II, we 
introduce image slice segmentation. In Section III, we 
introduce contour matching between adjacent slices. In 
Section IV, we introduce xml image database and 3D object 
reconstruction and partial 3D retrieval. The experimental 
result is discussed in section V.  

II. IMAGE SLICE SEGMENTATION     

In this project, since we need not only reconstruct the 3D 
model but also implement 3D component segmentation for 
3D partial retrieval, a novel tree mapped data structure is 
proposed using contours. The procedure to map the whole 
image stack data set into the new tree structure can be 
divided into two stages: separating and grouping. In this 
section we will discuss the first stage. The separating stage 
creates xml contour database for each image slice. This 
process includes image enhancement, optimal thresholding, 
edge detection, and object contour segmentation. The 
segmented image objects are saved as boundary contour 
coordinates and sequentially ordered to form a hierarchical 
xml database for each image slice. The data structure has a 
format similar to the one described in Fig. 1 where the 
images are divided into sequentially ordered contours. The 
same procedure is repeated for every image slice of 2D 
image stacks. 

Several methods can be effectively used to detect edges 
[4] [5]. The main problem with these methods is the lack of 
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continuity of edges, which requires post-processing to link 
the broken edges. The linking algorithms may introduce 
unnecessary ambiguity and incorrect links of noisy data. In 
this project, we use automatic segmentation method 
introduced in [6] [7]. The optimum automatic thresholding 
procedure is combined with edge detection to produce a 
continuously connected object border and leads to a fully 
segmented image.    
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Fig. 1. (a) The sequential contour assignment (b) The hierarchical tree data 
structure representation of (a) 

 
After implementing optimum thresholding, we obtain the 

binary data for each image slice. Next, we use an 8-
connective path template to link contour pixels of the object 
boundary. The contour is recognized by the coordinators of 
its pixels and saved as an object node in the xml database. 
We also use a contour length filter to remove the tiny 
contours, which are considered to be noise. Contour length 
filter is not only useful for image noise removal but also 
very helpful to simplify the contour matching process [8]. In 
this stage, original image files are one-time processed and 
stored in an xml file. Comparing with raw image files, the 
xml database is better for the image retrieval and analysis. 
Since segmented image object boundary contours are the 
basic units in the database, it is convenient for us to extract 
the information in which we are interested from the 
database instead of handling the whole image files. Fig. 2 
summarizes the above steps.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2   Flowchart of image stack preprocessing  
 

III. CONTOUR MATCHING BETWEEN ADJACENT SLICES 

In the contour data structure, 2D images are stored in the 
xml database in a sequential order, slice by slice. Fig. 3 
displays two adjacent confocal microscopic image slices of 
crayfish neuron and their corresponding contours 
regenerated from the xml database. It is worth noticing here 
that every image regardless of its complexity can be 
represented with a contour data structure. The main 
advantage of using contour data structures is that it can be 
efficiently used in finding the relationship between objects 
on adjacent layers. For example, in Fig. 3, the pointed 
contours obviously belong to the same 3D component and 
this relationship is represented as a link element in the xml 
database.   

The grouping stage is to connect the object contours on 
the adjacent image slices and map the whole image stack 
dataset into a new tree structure represented by the xml 
database. The object features such as contour length, area, 
centroid and moments are important in implementing 
contour object matching between two adjacent layers. These 
features are calculated in the previous stage. 

2D object recognition and matching is very important in 
many areas and many methods have been proposed such as 
template matching, string matching, shape-specific point 
matching, principal axis matching, dynamic programming, 
mutually-best matching, chamfer matching, graph matching, 
relaxation, elastic matching, and etc [9] [10].  To simplify 
our matching problem, we assume that each two contours 
belonging to the same 3D component in two adjacent slices 
will have the similar shapes. This essential assumption is 
made based on the fact that adjacent slices are very close 
and adjacent contours of the same object will differ by very 
few pixel points. The experimental measurements taken 
from this project indicate that the distances between two 
adjacent slices are around 2.1um. In most cases, this 
assumption is valid particularly when the contour shape 
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changes gradually and continuously. Fuzzy logic system 
(FLS) is used to help in this case to refine the matching 
decision. The inputs of the FLS include contour length, area 
moments, contour centroid and overlapped areas of two 
contours.   

  The two stages are combined in a tree model where each 
node in the tree is a representative of a segmented object 
and each edge in the tree is a representative of contour 
matching between two objects on adjacent slices.   

 

   
 

    
 

Fig. 3. (a) Original Confocal microscopic image slice of Crayfish neuron  
            (b) Enhanced contour image generated from the xml database 
 

IV. 3D RECONSTRUCTION AND PARTIAL 3D RETRIEVAL 

In this project, instead of interacting with original image 
slices, 3D object reconstruction and partial 3D component 
retrieval are based on the xml image database. The 
procedure of describing a 3D image stack using the contour 
xml tree data structure is stated in the following scenario:   

 
1. Each segmented object in the image slice 

corresponds to an object node in the xml file. 
2. In the xml database, an object node has several 

elements which define the object features. 
3. Layer element determines to which layer the object 

belongs. The objects on the same slice have the 
equal layer values.  

4. Link element indicates the centroid of the matched 
contours on the next adjacent layer. 

  
Fig. 4 shows an example of how a contour object is 

represented in the xml database. In the xml database, each 
object corresponds to a contour. Contour element records 
the boundary pixels in the original image slice which 
determine the contour shape. 

 
 
  

 
 
 
 
 
 
 
 
  
 

Fig. 4    Contour objects in the xml database 
 

Contour features are represented by the object elements 
of Contour_Length, Area, Moment, Centroid and etc. They 
are calculated once and can be easily extracted and 
repeatedly used. We can add more features of contours by 
defining more elements in the database. The database is 
easily maintainable and lends itself for parallel 
programming. The element Link and Layer in the xml 
database determine the overall topology of the 3D image 
structure.  

 From the xml contour database, we can reconstruct the 
solid object shape by first drawing the object boundary 
according to each contour element and then fill the pixels 
inside contour boundary using the original data. Applying 
this process to all the contours which have the same Layer 
value, we obtain all the segmented objects of an entire 
image slice. To construct the 3D model of an image stack, 
we repeat the refill process for all image slices and apply 
surface rendering techniques to create the 3D model [11] 
[12]. Fig. 5 is the 3D model rebuilt from our xml database 
representing 20 crayfish neuron slices. 

In the biological research, instead of requiring the whole 
3D model, researchers may be interested in the local 3D 
structures of specimens. For example, in Fig. 3 we know the 
two highlighted contours belonging to the same neuron 
branch. It may be useful for certain applications to retrieve 
the 3D branch in which the 2D contours reside.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 5    3D model of a crayfish neuron confocal image stack 

 
To fulfill the 3D partial retrieval, we use the xml tree 

Matched contours on 
adjacent image slices 

... 
<Object> 
<Image_Name>01\lgaff049a01002.tif</Image_Name> 
<Size>2048 2048</Size> 
<Layer>3</Layer> 
<Link>(1516 2020)</Link> 
<Centroid>1504 2032</Centroid> 
<Area>1762</Area> 
<Location>(1466 2033)</Location> 
<Contour_Length>546</Contour_Length> 
<Contour> 
 (1466,2033)(1466,2034)......   
</Contour> 
... 
</Object> 
... 



 
 

 

structure described above for 3D content based component 
retrieval. Since we use contours as the basic units to 
represent the 3D volumetric data, the corresponding 3D 
object can be divided into several components, each of 
which is made of a group of connected contours. Given an 
arbitrary pixel on a 2D image, we can easily identify its 
corresponding contour.  By applying a contour depth-first 
search in the tree structure, we can again easily find the 3D 
subcomponent in which the contour resides. Our 
experimental data have shown that the 3D component 
retrieval from the contour xml database is extremely faster 
than retrieval from the original image slices. Fig. 6 shows 
the result of 3D component by querying the database using 
the pointed contours in Fig. 3.  

 
 
 
 
 
 
 
 
 

Fig. 6    3D component of a crayfish neuron branch 
 

Using the tree structure, image querying schema can be 
extended by defining various searching rules for the xml 
contour database.   

3D image reconstruction and retrieval could be the 
bottleneck of computing performance when large amounts 
of image slices involved. Since the whole image stack 
volume dataset has been stored in the contour based xml 
database, an individual processor can interact with the xml 
database efficiently without image loading operations and 
preprocessing. The contour structured database makes the 
distribution of the contour matching tasks among multiple 
processors much simple. We designed two parallel 
algorithms for 3D image reconstruction and retrieval 
respectively. Since in the xml database, each contour has a 
Link element indicating the matched contour on its 
neighboring slice, and a Layer element indicating its slice 
level, given a contour matching or retrieval task, a processor 
thus can travel the tree structure database efficiently through 
the two xml elements to find out its corresponding object 
contour and repeatedly to form the 3D component without 
communicating with other processors. Distributing retrieval 
tasks among multiple processors is straightforward based on 
the contour xml database. We implement the parallel 
program in MPI on a SGI Origin 2000 machine and reach 
the speedups of 8.36 and 11.08 by using 16 processors for 
tree structure construction and 120 3D component 
retrievals. 

V. CONCLUSION AND FUTURE WORK   

In this paper we presented a novel tree structure for 3D 

component reconstruction and retrieval. Image boundaries 
or contours are proved to be more efficient in extracting and 
handling 3D objects. We successfully defined a preliminary 
model to segment image slices and group their related 
contours into 3D object components. Our experimental 
results indicated that, the contour structure is suitable for 
both 3D reconstruction and partial 3D image retrieval. This 
project represents a primary stage of a larger project aimed 
at performing an automatic object retrieval and quantitative 
analysis of neuron structure from confocal microscopy 
imaging database.   

As future extension of this work, a larger dataset is under 
construction to have more tests performed to increase the 
confidence on our scheme and to have a database with a 
larger collection of biological data that can be retrieved and 
analyzed more efficiently.  
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